Abstract

The objective of this study was to evaluate shear behavior and failure mechanisms of composite systems comprised of a geosynthetic clay liner (GCL) and textured geomembrane (GMX). Internal and interface direct shear tests were performed at normal stresses ranging from 100 kPa to 2000 kPa on eight different GCL/GMX composite systems. These composite systems were selected to assess the effects of (i) GCL peel strength, (ii) geotextile type, (iii) geotextile mass per area, and (iv) GMX spike density. Three failure modes were observed for the composite systems: complete interface failure, partial interface/internal failure, and complete internal failure. Increasing normal stress transitioned the failure mode from complete interface to partial interface/internal to complete internal failure. The peak critical shear strength of GCL/GMX composite systems increased with an increase in GMX spike density. However, the effect of geotextile type and mass per area more profoundly influenced peak critical shear strength at normal stress > 500 kPa, whereby an increase in geotextile mass per area enhanced interlocking between a non-woven geotextile and GMX. Peel strength of a GCL only influenced the GCL/GMX critical shear strength when the failure mode was complete internal failure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.