Abstract

Abstract Fibre-reinforced shotcrete is the most common support method for hard rock tunnels in the Nordic countries. The design of shotcrete is often based on empirical methods or simplified analytical equations, which neglect variations in mechanical properties and shotcrete thickness. Data collected from the field shows that significant variations in shotcrete thickness and bond strength should be expected during tunnel construction. However, how this affects the structural behaviour and capacity of the shotcrete lining is unknown. Moreover, the design philosophy for shotcrete assumes that the primary failure modes of shotcrete, i.e. bond and flexural failure, can be treated separately. This was derived based on observations of experiments in a laboratory environment. Therefore, the focus of a finalized doctoral project was to develop a numerical framework to simulate the structural behaviour of fibre-reinforced shotcrete in interaction with hard rock and rock bolts. The effect of variations in shotcrete thickness and bond strength was studied through numerical simulations to increase the understanding of its effect on the failure load of the lining. The results indicate that the most important parameter is the mean value of the shotcrete thickness and bond strength around a narrow perimeter of the block.’

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.