Abstract
The contribution focuses on the description of failure mechanism of atmospheric plasma sprayed multilayer thermal barrier coatings subjected to calcia-magnesia-alumino-silicate (CMAS) environmental attack. To identify exothermic and endothermic reactions which occurred during heating/cooling by means of calorimetry was also utilized initial yttria stabilized zirconia (YSZ) powder subsequently used for thermal spraying of multilayer thermal barrier coating system (TBCs), CMAS powder later on utilized for thin layer deposition and its mixture. Atmospheric plasma spray technique was used to produce the TBCs on a grit blasted nickel-based superalloy substrates, where CoNiCrAlY powder was used for deposition of a bond coat and YSZ powder was sprayed as a top coat. In accordance to the aerospace standard the thin layer of CMAS was deposited on as sprayed TBCs samples surface from its colloidal solution by paint brush method. Burner-rig test, utilizing direct propane-oxygen flame, was used for thermal cyclic exposition of the multilayer coated samples at the temperature of 1150 °C. Samples after thermal cyclic exposure test were investigated by means of materialographic analysis approaches. The significant reduction in life-time of CMAS coated YSZ top coat was observed due to lower melting point phase formation and molten silicate crystallization within the pores providing the spallation identified as a major mechanism of TBCs failure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.