Abstract

The failure mechanisms of SnAgCu solder on Al/Ni(V)/Cu thin-film, underbump metallurgy (UBM) were investigated after multiple reflows and high-temperature storage using a ball shear test, fracture-surface analysis, and cross-sectional microstructure examination. The results were also compared with those of eutectic SnPb solder. The Al/Ni (V)/Cu thin-film UBM was found to be robust enough to resist multiple reflows and thermal aging at conditions used for normal production purposes in both SnAgCu and eutectic SnPb systems. It was found that, in the SnAgCu system, the failure mode changed with the number of reflows, relating to the consumption of the thin-film UBM because of the severe interfacial reaction between the solder and the UBM layer. After high-temperature storage, the solder joints failed inside the solder ball in a ductile manner in both SnAgCu and SnPb systems. Very fine Ag3Sn particles were formed during multiple reflows in the SnAgCu system. They were found to be able to strengthen the bulk solder. The dispersion-strengthening effect of Ag3Sn was lost after a short period of thermal aging, caused by the rapid coarsening of these fine particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.