Abstract

Maintaining the integrity of the cement sheath is essential for the sealing of underground gas storage. The formation creep, temperature changes, and operating pressure changes during the operation of underground gas storage can cause changes in the stress of the cement sheath, which probably induces the failure of the cement sheath’s integrity. A creep model taking the effects of stress and temperature into account is developed to study the cement sheath’s integrity in creep formation, and the feasibility of creep simulation via finite element method is verified. The finite element method is used to analyze the effects of formation creep, temperature, operating pressure, and the cement sheath’s elastic modulus on the cement sheath’s integrity. The result shows that the coupling effect of formation creep and temperature increases the cement sheath’s failure risk; both the formation creep and the decrease in cement sheath temperature increase the Von Mises stress on the cement sheath, increasing the risk of the cement sheath’s shear failure. The decrease in cement sheath temperature decreases the circumferential compressive stress on the cement sheath and raises the risk of the cement sheath’s tensile failure. Shear failure of the cement sheath occurs at high operating pressure upper limits. The operating pressure is less than 70 MPa, or the cement sheath’s elastic modulus is less than 3 GPa, which can prevent the failure of the cement sheath’s integrity during the operation of underground gas storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.