Abstract

Abstract This paper describes an analytical method for calculating the strain energy release rate of cracked adhesive joints. The calculations proceed from a knowledge of the reactions in the adherends at the end of the joint overlap. For joints with equal adherends, a simple method exists for determining the Mode I and Mode II components of the energy release rate. The equations make it relatively easy to apply fracture mechanics failure criteria to arbitrarily loaded adhesive joints. In a subsequent paper, it is shown that by treating uncracked joints as having a crack, with the crack tip coinciding with the location of the spew fillet, the load required to propagate a crack in a cracked joint serves as a reliable conservative estimate of the load required to propagate a crack in an uncracked joint. The present method is suitable, therefore, for failure load predictions of structural adhesive joints in design applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call