Abstract

The wide-shallow composite bucket foundation (WSCBF) is a new type of offshore wind power foundation that can be built on land and rapidly installed offshore, thereby effectively reducing the construction time and costs of offshore wind power foundation. In this study, the horizontal bearing capacity is calculated by finite element simulation and compared with test results to verify the validity of results. In this process, the vertical load and bending load are respectively calculated by the finite element simulation. Under the vertical load effect, the bucket foundation and the soil inside are regarded as a whole, and the corresponding buckling failure mode is obtained. The ultimate vertical bearing capacity is calculated using empirical and theoretical formulas; the theoretical formula is also revised by finite element results. Under bending load, the rotational center of the composite bucket foundation (in a region close to the bucket bottom) gradually moves from the left of the central axis (reverse to loading direction) to the nearby compartment boards along the loading direction. The H–M envelope line shows a linear relationship, and it is determined that the vertical and bending ultimate bearing capacities can be improved by an appropriate vertical load.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call