Abstract

Composite pipes are currently being used in a multitude of applications varying from civil to oil and gas applications. Pipes are generally connected together by means of pipe elbows that in turn are subjected to bending moment and pressure loading. This study looks into the effect of combined loading on the first ply and ultimate failure load of pipe elbows. The influence of pressure loading followed by a bending moment versus first applying bending moment followed by subsequent pressure loading, on the ultimate catastrophic failure load, is investigated through numerical models. The combined bending moment and pressure load ramping is also studied. Design by analysis finite element damage mechanics numerical methods are applied to investigate post first ply failure (FPF) and stress redistribution. The study shows that different loading combinations can give rise to different damage mechanisms and ultimately failure loads. A safe design load envelope for different fiber-reinforced pipe elbows based on FPF and ultimate catastrophic load is identified and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.