Abstract
Lattice structures allow achieving high stiffness and strength, maintaining the part weight low. There exist different technologies for the manufacturing of such structures, but the one having high flexibility and offering the possibility of producing parts with complex geometries is the additive manufacturing process. In this paper, titanium specimens with different lengths, presenting a lattice structure as a core, were manufactured by electron beam melting (EBM) process. Then, the bending properties, like stiffness and failure energy, were experimentally determined by subjecting the specimens to the three-point bending test. The analysis of the fracture surface was carried out too. The three-point bending test evidenced that the longer the span was, the higher the elastic contribution over the plastic one was; moreover, the fracture morphology evidenced a ductile behaviour of the material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.