Abstract

This paper presents a novel arcing power-based algorithm to identify failures in operations of on-load tap-changers (OLTCs). An OLTC is the solely moving part of power transformers and thus highly prone to failure. Most of the OLTC defects are originated from abnormal arcing times leading to abnormal arcing energies. The proposed algorithm utilizes the power difference between the input and output terminals of transformer to estimate the OLTC arcing power. The integration of arcing power for a tap-changing operation results in an arcing energy. This arcing energy is estimated for each operation and used as an indication of OLTC failure. By this definition, whenever the estimated arcing energy exceeds a predefined value for a tap-changing event, it shows a failure in OLTC operation. The outcomes obtained from extensive simulation studies for different internal failures and external faults prove that any malfunction or failure in the operation of OLTC can be detected by the proposed method in a timely manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.