Abstract
The multi-state system (MSS) is a system that may exhibit multiple states or performance levels. Most existing studies assumed that the transition probabilities from states to states are known. However, in practical engineering, the complex stress conditions lead to great difficulty of collecting the statistical data of state transitions. In this paper, based on physics-of-failure theory, we consider different levels of damages caused by failure mechanisms (FMs) are the main reasons to components’ multiple states. Besides, the physical isolation (PI) effect on degradations of FMs is also studied, which is neglected in the existing studies about the MSS with functional dependence groups. Decision-diagram based methods are used for modeling the failure behavior of the MSS. An automatic collision avoidance system is analyzed for illustrating the proposed modeling and analyzing methods. The results show that comparing to the results without the consideration of PI effect, the probabilities of different states with PI effect of multi-state components and system may decrease or increase, which depends on the actual PI effects to the stress conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.