Abstract
The failure strength of annealed float glass is difficult to predict accurately due to several factors that influence the glass’ mechanical behavior, including stress rate, environmental conditions, fabrication process, glass thickness and the presence of surface flaws. Some of these parameters strongly depend on the construction practices of each country. This study aimed to assess the failure strength of annealed glass commonly used in the construction industry in Mexico, based on experimental tests. It is also determined experimental data dispersion as function of the glass thickness. The approach employs destructive tests on annealed glass plates subjected to out-of-plane loading in a coaxial double ring (CDR) test setup and analytical linear and a geometric non-linear finite element analyses. The mechanical behavior determined by the numerical model agrees with the failure strength and deflection obtained experimentally. The results show the mean failure strength of glass specimens with several thicknesses typically used in Mexico, and the analysis of data dispersion is also presented. The statistical analyses of glass failure strengths with thickness range 3–19mm indicate that all samples cannot be considered coming from the same population and data dispersion depended on glass thickness. Finally, the use of the experimental results for evaluating mean failure strength of glass panels and a comparison with expected wind-induced pressure in buildings located in two sites in Mexico is exposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.