Abstract

Bamboo–steel composite structure is constructed with bamboo plywood and cold-formed thin-walled steel, which are bonded by structural adhesive. To investigate the failure behavior of the adhesive bonded interface between bamboo plywood and steel, both experimental and numerical analyses were performed. An adhesive bonded member was designed to observe the failure behavior through the variation of stress distribution on steel sheet under tension. Further analysis of failure behavior was carried out by the numerical model through the stress analysis at the adhesive bonded interfaces. The experimental and numerical analyses revealed the failure mainly occurred at the adhesive bonding interface, caused by the stress concentration at the end of the overlap. The influences of modulus of elasticity of bamboo plywood in the parallel to grain direction and the thickness of steel sheet on the stress distribution at the adhesive bonding interface were investigated, which indicated the stress distribution had a major effect on the load-carrying capacity of the composite structural member. It also suggests enlarging the geometry properly and choosing the bamboo plywood with large modulus of elasticity in the parallel to grain direction are effective to increase the load-carrying capacity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.