Abstract

Abstract Incident involving failures of 6 months old API 5L X42 (NPS8) and SDR 17, 125 mm medium density polyethylene pipe (MDPE) supplying natural gas to an industrial customer has caused serious 7 h supply disruption. Study was performed to identify the most probable cause of the pipes failures. The study conducted by reviewing the existing design and construction data, visual physical inspection, pipe material analysis, structural analysis using NASTRAN and Computational Fluid Dynamics analysis (CFD) using FLUENT. Investigations revealed that high pressure water jet from leaked water pipe had completely mixed with surrounding soil forming water soil slurry (high erosive properties) formed at a close vicinity of these pipes. Continuous impaction of this slurry upon the API 5L X42 pipe surface had caused losses of the pipe coating materials. Corrosion quickly ensued and material loss was rapid because of the continuous erosion of oxidised material that occurred simultaneously. This phenomenon explains the rapid thinning of the steel pipe body which later led to its failure. Metallurgical study using photomicrograph shows that the morphology of the steel material was consistent and did not show any evidence of internal corrosion or micro fractures. The structural and CFD simulation results proved that the location, rate and the extent of erosion failures on the pipe surfaces can be well predicted, as compared with actual instances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.