Abstract

This paper presents a risk assessment of a Liquefied Natural Gas (LNG)/diesel hybrid locomotive to identify and rank failures that could result in the release of LNG or Gaseous Natural Gas (GNG) to the surrounding environment. The Federal Railroad Administration (FRA) will analyze industry safety assessments of the proposed rail vehicles and the goal of this risk analysis is to identify and prioritize hazard scenarios so the FRA can ensure that they are properly addressed. For operational activities, a Failure Modes and Effects Analysis (FMEA) was performed to identify high risk failure modes. A modified hazard and operability study (HAZOP) methodology was used to analyze hazard scenarios for the maintenance activities for the LNG and Compressed Natural Gas (CNG) dual-fuel locomotives and the LNG tender car. Because refueling operations are highly dependent on human interactions, a human factors assessment was also performed on a sample refueling procedure to identify areas of improvement and identify best practices for analyzing future procedures. The FMEA resulted in the identification of 87 total failure modes for the operational phase, three of which were deemed to have a High risk priority, all involving the cryogenic storage tank. The HAZOP for the LNG tender resulted in the identification of eight credible hazard scenarios and the HAZOP for the locomotive in the maintenance mode identified 27 credible hazard scenarios. The high and medium risk failure modes and hazard scenarios should be prioritized for further analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call