Abstract
This paper presents the failure investigation of lead-acid battery grids received from a local battery manufacturer. Distortion, cracking, and brittleness were observed in as-cast grids. These battery grids were gravity cast by re-melting of locally made Pb–Sb ingots. However, similar distortion and brittleness were not observed in grids of similar design cast by re-melting of imported Pb–Sb ingots. Spectroscopy, optical and scanning electron microscopy, SEM–EDS analysis, and microhardness measurements were carried out on both types of grids to find out the root cause of failure. It was concluded that the distortion and cracking were mainly caused because of coarse dendritic microstructure with interdendritic and intercellular segregation produced by either high pouring temperature or low cooling rates employed during casting. This conclusion suggests that the casting parameters may have differed for the two types of ingots used. However, another contributing factor was thermal stresses induced during solidification and the brittleness of the locally produced ingots which contained a high arsenic content.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.