Abstract

This study represents an effort to predict the bearing strength, failure modes, and failure load of bolted joints in foam-core sandwich composites. The studied joints have been used in a light full composite airplane. By using solid laminates, a new design for the joint zone is developed. These solid laminates include a number of glass plies with total thickness equal to core thickness. The effect of solid laminate size and interface angle of foam—solid laminate in the bonding zone on the bearing strength, failure loads and type of modes are investigated. The numerical study is performed using 3D FEM in ANSYS commercial code. Tsai—Wu failure criterion is used in the failure analysis. The results indicate that the most important parameter in the proposed joint zone design is the foam—solid laminate interface angle which plays an important role on the value of failure criterion (damage) in the bonding zone. Also, the use of squared shaped solid laminate as compared with a circular laminate will decrease the criterion value significantly. Finally, the influence of solid laminate size and interface angle on the buckling strength was discussed. As obtained through eigenvalue buckling analysis, the increase of solid laminate size or interface angle could result in considerable higher buckling strength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.