Abstract
The failure analysis of a martensitic stainless steel (CA-15M) roll manufactured by centrifugal casting and used in cast glass rolling was carried out by means of traditional characterization techniques (optical metallography, SEM, EDX microanalysis, tensile testing and XRD). The roll was in the as-cast condition and its microstructure featured large proportion of δ ferrite (between 20% and 27%) in a martensitic (α′) matrix, with the δ/α′ interfaces presenting an intergranular network of M23C6 carbides. The crack propagation began in the internal surface of the roll, with δ/α′ intergranular and transgranular cleavage in the “equiaxed region” of the casting, progressing to δ/α′ intergranular ductile fracture in the “columnar” and “chilled regions”. Tensile thermal stresses in the internal surface of the roll associated with microstructural embrittlement (network of interfacial carbide and microporosities) are thought to be the main causes for the premature failure of the roll. Finally, materials selection was performed to replace the CA-15M stainless steel with another class of stainless steel for centrifugal casting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.