Abstract

A detailed analysis of a crankshaft failure belonging to a helicopter engine is presented. The main objective of this work was to analyze the characteristics of the failure and determine the root cause of the failure of the crankshaft. In order to determine the causes of the crankshaft failure, a material analysis was performed, followed by a detailed observation of the failure mechanisms through macroscopic, microscopic and microstructural examinations of the fracture surface. A preliminary observation of the fractured crankshaft indicates that this failure occurred by a fatigue process where the fracture surface shows obvious signs of cyclic propagation mechanisms. The existence of a large number of beachmarks indicates significant crack growth characterized by the effect of successive starts and stops of the engine by the operating conditions. These beachmarks cover about two-thirds of the total area of the fracture surface and the uniform geometric pattern of the crack front, along the entire propagation zone, allows to conclude that the fatigue process occurred from a loading state consisting essentially of cyclic bending stresses between the crankweb and the main journal of the crankshaft. No original defect was observed either on the surface or inside the material that could be the source of the crack initiation and growth and subsequent final fracture of the component. The analysis of the shell bearings applied to the main journal revealed a significant damage, with fractured location lugs, that are believed to be at the origin of the crack initiation of the crankshaft.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.