Abstract

An anisotropic model of damage mechanics for ductile fracture incorporating the endochronic theory of plasticity is presented in order to take into account material deterioration during plastic deformation. An alternative form of endochronic (internal time) theory which is actually an elasto-plastic damage theory with isotropic-nonlinear kinematic hardening is developed for ease of numerical computation. Based on this new damage model, a finite element algorithm is formulated and then employed to characterize the fracture of thin aluminum plate containing a center crack. A new criterion termed as Y R-Criterion is proposed to define both the crack initiation angle and load. Experiments have been conducted to verify the validity of the proposed damage model and it is found that the theoretical crack initiation loads correspond closely with the measured values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.