Abstract
Several overloaded-induced overturning incidents of girder bridges with single-column piers have occurred in recent years, resulting in significant casualties and economic losses. Temperature, in addition to overloading, may also play a role in exacerbating bridge overturning. To investigate the association between temperature and bridge overturning, an explicit finite element model (EFEM) of a three-span concrete curved continuous bridge considering nonlinearities was developed to simulate overall collapse. The effects of uniform and gradient temperatures on the overall overturning stability of curved and straight bridges were evaluated based on the EFEMs. Furthermore, the temperature-bridge coupling model and temperature-vehicle-bridge coupling model were utilized to examine how gradient temperature influences bridge overturning. The results show that the overall overturning collapse of a bridge follows four stages: stabilization, transition, risk and overturning. Variations in uniform temperature from -30 °C to 60 °C had a negligible effect on the ultimate vehicle weight for bridge overturning, with a variation of less than 1%. As the gradient temperature ranged from -30 °C to 60 °C, curved bridges show less than a 2% variation in ultimate vehicle weights, compared to a range of -6.1% to 11.7% for straight bridges. The torsion caused by positive gradient temperature in curved bridges can exacerbate bridge overturning, while negative gradient temperature in straight bridges can lead the girder to 'upward warping', facilitating girder separation from bearings. Monitoring the girder rotation angle and vertical reaction force of bearings can serve as important indicators for comparing the stability of bridges.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.