Abstract

ABSTRACT In laboratory experiments, we studied collisions of ensembles of compact (filling factor = 0.33) millimeter dust aggregates composed of micrometer quartz grains. We used cylindrical aggregates, triangular aggregates, square aggregates, and rectangular aggregates. Ensembles of equal size aggregates as well as ensembles with embedded larger aggregates were studied. The typical collision velocities are 10–20 mm s−1. High spatial and temporal resolution imaging unambiguously shows that individual collisions lead to sticking with a high probability of 20%. This leads to connected clusters of aggregates. The contact areas between two aggregates increase with collision velocity. However, this cluster growth is only temporary, as subsequent collisions of aggregates and clusters eventually lead to the detachment of all aggregates from a cluster. The contacts are very fragile as aggregates cannot be compressed further or fragment under our experimental conditions to enhance the contact stability. Therefore, the evolution of the ensemble always leads back to a distribution of individual aggregates of initial size. This supports and extends earlier experiments showing that a bouncing barrier in planetesimal formation would be robust against shape and size variations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.