Abstract
We present a framework for building fail-safe hard real-time applications in timed asynchronous distributed systems subject to communication partitions and performance, omission, and crash failures. Most distributed systems built from commercial-off-the-shelf (COTS) processor and communication services are subject to such partitions because their COTS components do not provide hard real-time guarantees. Also custom designed systems can be subject to partitions due to unmaskable link or router failures. The basic assumption behind our approach is that each processor has a local hardware clock that proceeds within a linear envelope of real-time. This allows one to compute an upper bound on the actual delays incurred by a particular processing sequence or message transmission. Services and applications can use these computed bounds to detect when they cannot guarantee all their standard properties because of excessive delays. This allows an application to be fail-aware, that is, to detect when it cannot guarantee all its safety properties and in particular, to detect when to switch to a fail-safe mode.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.