Abstract

Cushing's disease (CD) is caused by rare pituitary corticotroph tumors that lead to corticotropin (ACTH) excess. Variants in FAF1, a pro-apoptotic protein involved in FAS-induced cell death, have been implicated in malignant disorders but the involvement of FAF1 in pituitary tumors has not been studied. Genetic data from patients with CD were reviewed for variants in FAF1 gene. Knockout mice (KO) were followed to assess the development of any pituitary disorder or cortisol excess. AtT-20 cells were used to study the effects of the variants of interest on ACTH secretion and cell proliferation. Three variants of interest were identified in 5 unique patients, two of which had rare allele frequency in genomic databases and were predicted to be likely pathogenic. KO mice were followed over time and no difference in their length/weight was noted. Additionally, KO mice did not develop any pituitary lesions and retained similar corticosterone secretion with wild type. AtT-20 cells transfected with FAF1 variants of interest or WT expression plasmids showed no significant difference in cell death or Pomc gene expression. However, in silico prediction models suggested significant differences in secondary structures of the produced proteins. In conclusion, we identified two FAF1 variants in patients diagnosed with CD with a potential pathogenic effect on the protein function and structure. Our in vitro and in vivo studies did not reveal an association of FAF1 defects with pituitary tumorigenesis and further studies may be needed to understand any association.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call