Abstract

Many bacterial pathogens have developed methods to overcome the defences of the host innate immune system. One such defence is the release of antimicrobial peptides (AMPs). Histones have been found to function as AMPs, in addition to their main biological function of packaging and organising DNA into nucleosomes. In this study, the Gram-positive anaerobic coccus Finegoldia magna was found to bind histones by Western blot and immunoprecipitation analysis. F. magna, which is normally a commensal of the skin and mucous membranes, is also known to act as an opportunistic pathogen and has been isolated from various clinical infection sites. It was found to bind to histones extracted from human skin epidermis through its surface and extracellular adhesion protein FAF. Through FAF binding, F. magna was protected from histone bactericidal activity. Furthermore, the histones were found to be degraded by SufA, a subtilisin-like extracellular serine protease of F. magna. Hence, the results of the present study will give more insight into how F. magna persists both as a commensal organism at the basement membrane of the skin and as an opportunistic pathogen during infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.