Abstract
Residual connections have been proposed as an architecture-based inductive bias to mitigate the problem of exploding and vanishing gradients and increased task performance in both feed-forward and recurrent networks (RNNs) when trained with the backpropagation algorithm. Yet, little is known about how residual connections in RNNs influence their dynamics and fading memory properties. Here, we introduce weakly coupled residual recurrent networks (WCRNNs) in which residual connections result in well-defined Lyapunov exponents and allow for studying properties of fading memory. We investigate how the residual connections of WCRNNs influence their performance, network dynamics, and memory properties on a set of benchmark tasks. We show that several distinct forms of residual connections yield effective inductive biases that result in increased network expressivity. In particular, those are residual connections that (i) result in network dynamics at the proximity of the edge of chaos, (ii) allow networks to capitalize on characteristic spectral properties of the data, and (iii) result in heterogeneous memory properties. In addition, we demonstrate how our results can be extended to non-linear residuals and introduce a weakly coupled residual initialization scheme that can be used for Elman RNNs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.