Abstract
We explore in this paper one novel deterministic simulation model for downlink multiple-input multiple-output (MIMO) fading channel in wireless communication. The von Mises function, which characterizes accurately the distribution of non-isotropic scattering around mobile station, is used to deterministic modeling process for both space-time codes (STC) scenario and downlink beam-forming (DBF) scenario. Statistical fading characteristics of the simulated MIMO channel, including level-crossing rate, average duration of fades and envelope cross-correlation, are studied. The impact of non-isotropic scattering on MIMO-link capacity is also investigated. The numerical results show that existence of non-isotropic scattering degraded ergodic capacity of MIMO channel by 1 bit/Hz/s in the case of STC scenario. And the maximum achievable capacity in the case of DBF scenario is always lower than that of STC scenario because transmit steering vector affected the transmit antenna correlation. The proposed MIMO channel simulation model has a universal structure and requires less parameter measurements. Hence, it can be used effectively for link-level simulation and capacity evaluation in MIMO wireless communication systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.