Abstract

The bacterial flagellum is a motility organelle consisting of a long helical filament as a propeller and a rotary motor that drives rapid filament rotation to produce thrust. Salmonellaenterica serovar Typhimurium has two genes of flagellin, fljB and fliC, for flagellar filament formation and autonomously switches their expression at a frequency of 10-3-10-4 per cell per generation. We report here differences in their structures and motility functions under high-viscosity conditions. A Salmonella strain expressing FljB showed a higher motility than one expressing FliC under high viscosity. To examine the reasons for this motility difference, we carried out structural analyses of the FljB filament by electron cryomicroscopy and found that the structure was nearly identical to that of the FliC filament except for the position and orientation of the outermost domain D3 of flagellin. The density of domain D3 was much lower in FljB than FliC, suggesting that domain D3 of FljB is more flexible and mobile than that of FliC. These differences suggest that domain D3 plays an important role not only in changing antigenicity of the filament but also in optimizing motility function of the filament as a propeller under different conditions. PMID: 32041169 Funding information This work was supported by: JEOL YOKOGUSHI Research Alliance Laboratories of Osaka University, International Grant ID: None Japan Agency for Medical Research and Development, International Grant ID: JP19am0101117, JP17pc0101020 Ministry of Education, Culture, Sports, Science and Technology, International Grant ID: JP15H01640 Japan Society for the Promotion of Science, International Grant ID: JP25000013, 18K06155, JP26293097, JP19H03182

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.