Abstract

High dispersal risks of ant queens make staying in the natal patch more attractive than long range dispersal. These alternative strategies and the mode of colony founding determine the average number of queens in the population. Increasing competition and queen predation make independent colony founding increasingly difficult and the only option for new queens to reproduce in the habitat patch may be to enter an existing colony. The effect of nest-site availability to the number of queens was studied in successional spruce-dominated taiga forests in facultatively polygynous ants Myrmica ruginodis, M. sulcinodis, Leptothorax acervorum, Formica sanguinea and F. truncorum. Decreasing relatedness among worker nestmates supports an association between increasing habitat age and polygyny to some extent. M. sulcinodis and L. acervorum persist in this type of taiga only for a relatively short period. Relatedness varied only slightly among populations, but lower relatedness estimated in other studies suggested higher levels of polygyny in older populations. In M. ruginodis there was more variation in relatedness and it was possibly connected to the relative proportions of the two social forms of the species. In F. sanguinea and F. truncorum the decrease in relatedness with increasing age of the habitat was clearest. Other factors favouring limited dispersal and acceptance of new queens in the colonies are, however, hard to separate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.