Abstract

Facultative shifts in nesting habitat selection in response to perceived predation risk may allow animals to increase the survival probability of sessile offspring. Previous studies on this behavioral strategy have primarily focused on single attributes, such as the distance moved or changes in nesting substrate. However, nest site choice often encompasses multiple habitat elements at both the nest site and nest patch scales. We studied the within-season re-nesting strategy of a multi-brooded songbird, the Brewer's sparrow (Spizella breweri), to determine whether pairs utilized a "win-stay, lose-switch" decision rule with respect to inter-nest distance, nest substrate and/or nest patch characteristics in response to previous nest fate. Pairs moved sequential nest sites slightly farther following nest predation versus success. When inter-nest distance was controlled, however, pairs changed nest patch attributes (shrub height, potential nest shrub density) associated with probability of nest predation to a greater extent following nest predation than success. The strategy appeared to be adaptive; daily nest survival probability for previously depredated pairs increased with greater Euclidian habitat distances between attempts, whereas previously successful pairs were more likely to fledge second attempts when nest sites were similar to those of previous attempts. Our results suggest that nesting birds can use prior information and within-season plasticity in response to nest predation to increase re-nesting success, which may be a critical behavioral strategy within complex nest predator environments. Re-nesting site selection strategies also appeared to integrate multiple habitat components and inter-nest distances. The consideration of such proximate, facultative responses to predation risk may clarify often unexplained variation in habitat preferences and requirements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.