Abstract

Abstract. The use of soil water sensors is commonly advocated to aid and improve irrigation management in crop production systems. However, there are concerns about how sensor type, installation technique, sensor orientation, and soil texture may affect sensor accuracy. A field study was conducted to compare the performance of three commercially available soil water sensors (Acclima 315L, Decagon GS1, and Campbell Scientific 655) and a soil water potential sensor (Watermark 200SS) using different installation orientations of horizontal insertion, laid horizontal placement, and vertical insertion at depths of 15, 46, and 76 cm (6, 18, and 30 in.) in an irrigated clay loam soil field. Results indicated all sensors demonstrated similar trends of soil water content in response to wetting events (precipitation and irrigation) at the 15 cm depth following a 4-month settling period prior from the start of the growing season. Comparatively, the Acclima 315L performed well using horizontal insertion compared to calibrated neutron moisture meters (NMMs) at depths of 46 and 76 cm with R2 of 0.73 and 0.96 and slopes of 1.36 and 1.47, respectively. In addition, water storage in the 0.9 m soil profile integrated using the horizontally inserted Acclima 315L across the three depths matched closely with profile water storage determined by the NMMs with a mean difference (MD) and root mean square error (RMSE) of 25.7 and 36.4 mm. However, site-specific corrections or calibrations for each sensor type are required for accurate soil water content estimations with this clay loam soil for irrigation management applications. Keywords: Corn, Irrigation management, Neutron moisture meter, Soil water content, Soil water sensors, Semi-arid region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.