Abstract
The goal of this study is to clarify the surface-chemical and microphysical variables that influence bacterial spore transport through soil, thereby defining the factors that may affect spore transport velocity. Bacillus cereus spores were continuously monitored in a soil column under saturated conditions with experimental variations in soil grain size (0.359 and 0.718 mm), pH (7.2 and 8.5), and water flow rate (1.3 and 3.0 mL/min). Increasing soil grain size, flow rate, and pH resulted in enhanced spore movement. Spore transport increased 82% when soil grain size was doubled. An increase in effluent flow rate from 1.3 to 3.0 mL/min increased spore movement by 71%. An increase in pH increased spore transport by 53%. The increase in hydrodynamic forces resulting from the larger grain size soil and higher flow rate functioned to overcome the hydrophobic nature of the spore’s coat, and the interparticle bonding forces between the spore and soil particles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.