Abstract

Summary When the pressure in a gas-condensate reservoir falls below the dewpoint, liquid condensate can accumulate in the pore space of the rock. This can reduce well deliverability and potentially affect the compositions of the produced fluids. Forecasting these effects requires relative permeability data for gas-condensate flow in the rock in the presence of immobile water saturation. In this study, relative permeability measurements were conducted on reservoir rock at a variety of conditions. The goal was to determine the sensitivity to interfacial tension (IFT) (which varies with pressure) and fluid type (reservoir fluids, pure hydrocarbons, and water). The results show a significant sensitivity to fluid type, as well as an IFT sensitivity that is similar to that reported by other researchers. For obtaining relative permeability data that are applicable to a specific reservoir, we conclude that laboratory measurements must be conducted at reservoir conditions with actual reservoir fluids. The measurements reported here used a state-of-the-art relative permeability apparatus of in-house design. The apparatus uses elevated temperature and pressure, precision pumps, and a sight glass with automated interface tracking. Closed-loop recirculation avoids the need for large quantities of reservoir fluids and ensures that the gas and liquid are in compositional equilibrium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call