Abstract

We examined whether factors released from embryonic stem (ES) cells inhibit cardiac and vascular cell apoptosis and stimulate endogenous progenitor cells that enhance neovascularization with improved cardiac function. We generated and transplanted ES-conditioned medium (CM) in the infarcted heart to examine effects on cardiac and vascular apoptosis, activation of endogenous c-kit and FLK-1(+ve) cells, and their role in cardiac neovascularization. TUNEL, caspase-3 activity, immunohistochemistry, H&E, and Masson's trichrome stains were used to determine the effect of transplanted ES-CM on cardiac apoptosis and neovascularization. TUNEL staining and caspase-3 activity confirm significantly (p < 0.05) reduced apoptosis in MI+ES-CM compared with MI+ cell culture medium. Immunohistochemistry demonstrated increased (p < 0.05, 53%) c-kit(+ve) and FLK-1(+ve) positive cells, as well as increased (p < 0.05, 67%) differentiated CD31-positive cells in ES-CM groups compared with respective controls. Furthermore, significantly (p < 0.05) increased coronary artery vessels were observed in ES-CM transplanted hearts compared with control. Heart function was significantly improved following ES-CM transplantation. Next, we observed significantly increased (p < 0.05) levels of c-kit activation proteins (HGF and IGF-1), anti-apoptosis factors (IGF-1 and total antioxidants), and neovascularization protein (VEGF). In conclusion, we suggest that ES-CM following transplantation in the infarcted heart inhibits apoptosis, activates cardiac endogenous c-kit and FLK-1(+ve) cells, and differentiates them into endothelial cells (ECs) that enhances neovascularization with improved cardiac function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.