Abstract

We recently reported that embryonic stem cells-conditioned medium (ES-CM) contains antiapoptotic factors that inhibit apoptosis in the cardiac myoblast H9c2 cells. However, the mechanisms of inhibited apoptosis remain elusive. In this report, we provide evidence for the novel mechanisms involved in the inhibition of apoptosis provided by ES-CM. ES-CM from mouse ES cells was generated. Apoptosis was induced after exposure with H(2)O(2) (400 mum) in H9c2 cells followed by the replacement with ES-CM or culture medium. H9c2 cells treated with H(2)O(2) were exposed to ES-CM, and ES-CM plus cell survival protein phosphatidylinositol 3-kinase/Akt inhibitor, LY-294002, or extracellular signal-regulated kinase (ERK1/2) inhibitor, PD-98050. After 24 h, H9c2 cells treated with ES-CM demonstrated a significant increase in cell survival. ES-CM significantly inhibited (P < 0.05) apoptosis determined by terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling staining, apoptotic ELISA, and caspase-3 activity. Importantly, enhanced cell survival and inhibited apoptosis with ES-CM was abolished with LY-294002. In contrast, PD-98050 shows no effect on ES-CM-increased cell survival. Furthermore, H(2)O(2)-induced apoptosis is associated with decreased levels of phosphorylated (p)Akt activity. Following treatment with ES-CM, we observed a decrease in apoptosis with an increase in pAkt, and the increased activity was attenuated with the Akt inhibitor, suggesting that the Akt pathway is involved in the decreased apoptosis and cell survival provided by ES-CM. In contrast, we observed no change in ES-CM-decreased apoptosis or pERK with PD-98050. In conclusion, we suggest that ES-CM inhibited apoptosis and is mediated by Akt but not the ERK pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.