Abstract

The condition in a living cell is molecularly crowded with various biomolecules. The total concentration of the biomolecules inside Escherichia coli is in the range of 300-400 g/L. This is distinct from typical biomolecular concentrations of less than 1g/L, which is generally used for experiments in vitro. Here, we analyzed quantitatively the effects of molecular crowding on the thermodynamics of antiparallel G-quadruplex formation via Hoogsteen base pairs and of antiparallel hairpin-looped duplex (HP duplex) formation via Watson-Crick base pairs. The free energy changes for G-quadruplex and duplex formations decreased and increased when the concentration of poly(ethylene glycol) 200 was increased from 0 to 40 wt%, respectively. These results showed that the antiparallel G-quadruplex is stabilized under molecular crowding conditions but the HP duplex is destabilized.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.