Abstract

The article is devoted to the regularities of the propagation of self-induced hydraulic fracturing cracks in the process of injection of the displacement agent into the formation in order to maintain reservoir pressure. Technogenic and petrological factors have a significant impact on the processes of initiation, propagation and degradation of self-induced hydraulic fracturing cracks. In modern oil and gas field practice, we are just beginning to use geomechanical simulators for private calculations and have not yet used them in integrated calculations of field development options, nevertheless, the influence of geomechanical processes of the spread of man-made cracks makes a significant contribution to the field development indicators. The aim of the study is a complex of factors that prevent and contribute to the development of self-induced hydraulic fracturing cracks. The study uses the author's methodology for estimating the crack length of a selfinduced hydraulic fracturing depending on the downhole pressure in the injection well. The results of the work have developed a classification of factors influencing the development of self-induced hydraulic fracturing cracks, a quantitative analysis of the differences in the characteristics of the spread of man-made cracks for two deposits with different geomechanical and hydrodynamic properties. The work makes a significant contribution to the understanding of the laws of the development of man-made cracks and has broad prospects for development, allowing us to significantly improve the current 3D digital models and analytical filtration models, which will improve the production of field reserves and increase the value of the oil recovery factor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call