Abstract

Nonphysically firm wind generation connections (i.e., those to which curtailment can apply) may be necessary for significant wind integration to congested transmission networks. A study of factors influencing this associated wind energy curtailment is, therefore, of timely importance. In this paper, the wind curtailment estimation effects of natural inter-yearly wind profile variability, system demand-profile/fuel-price parameter uncertainty, and minimum system inertial constraints are studied in detail. Results indicate that curtailment estimation error can be reduced by appropriate wind data year-length and sampling-rate choice, though a pragmatic consideration of system parameter uncertainty should be maintained. Congestion-related wind energy curtailment risk due to such parameter uncertainty exhibits appreciable interlocational dependency, suggesting there may be scope for effective curtailment risk management. The coincidence of wind energy curtailment estimated due to network thermal congestion and system-wide inertial-stability issues also has commercial significance for systems with very high wind energy penetration targets, suggesting there may be appreciable interaction between different sources of curtailment in reality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.