Abstract

In this paper, we analyze the factors that affect the microwave pulse duration in a klystron-like relativistic backward wave oscillator (RBWO), including the diode voltage, the guiding magnetic field, the electron beam collector, the extraction cavity, and the gap between the electron beam and the slow wave structure (SWS). The results show that the microwave pulse duration increases with the diode voltage until breakdown occurs on the surface of the extraction cavity. The pulse duration at low guiding magnetic field is generally 5–10 ns smaller than that at high magnetic field due to the asymmetric electron emission and the larger energy spread of the electron beam. The electron beam collector can affect the microwave pulse duration significantly because of the anode plasma generated by bombardment of the electron beam on the collector surface. The introduction of the extraction cavity only slightly changes the pulse duration. The decrease of the gap between the electron beam and the SWS can increase the microwave pulse duration greatly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call