Abstract

The recent description of potentially generic early warning signals is a promising development that may help conservationists to anticipate a population's collapse prior to its occurrence. So far, the majority of such warning signals documented have been in highly controlled laboratory systems or in theoretical models. Data from wild populations, however, are typically restricted both temporally and spatially due to limited monitoring resources and intrinsic ecological heterogeneity-limitations that may affect the detectability of generic early warning signals, as they add additional stochasticity to population abundance estimates. Consequently, spatial and temporal subsampling may serve to either muffle or magnify early warning signals. Using a combination of theoretical models and analysis of experimental data, we evaluate the extent to which statistical warning signs are robust to data corruption.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.