Abstract

This study aimed to identify factors that influence the decision to take safety regulatory actions in routine signal management based on spontaneous reports. For this purpose, we analyzed the safety signals identified from the Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS) and related information. From the signals that the FDA identified in the FAERS between 2008 1Q and 2014 4Q, we selected 216 signals for which regulatory action was or was not taken. Characteristics of the signals were extracted from the FAERS quarterly reports that give information about what signals were identified from the FAERS and what actions were taken for them, and the FAERS data released in the same quarter when the signal was published. Univariate and multivariable logistic regression analysis was used to assess the relationship between the characteristics of each of the signals and the decision on regulatory action. As a result of the univariate logistic regression analysis, we selected 5 factors (positive rechallenge, number of cases accumulated in the last one-year period before the signal indication, previous awareness, serious outcome, risk for special populations) to include in the multivariable logistic regression model (p < 0.2). The multivariate logistic regression analysis showed that the number of cases accumulated in the last one-year period before the signal indication and previous awareness were associated with the regulatory action (p < 0.05). The present study showed that number of cases accumulated in the last one-year period before the signal indication and previous awareness potentially associated with the United States regulatory action. When assessing safety signals, we should be careful of the adverse events with a large number of cases accumulated rapidly in a short period. In addition, we should pay attention to new information on not only unknown risks but also previously identified and potential risks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.