Abstract

The roles of aromatic core residues in regulating the reduction potential, the enthalpy and entropy of reduction, and the self-exchange rate constants for electron-transfer reactions for the prosthetic [Fe4S4]3+/2+ cluster of Chromatium vinosum high potential iron protein (HiPIP) have been addressed by a combination of site-directed mutagenesis, high field NMR (EXSY) experiments, and variable temperature spectrochemical redox titration measurements. Minimal changes are observed following nonconservative mutation of residues Tyr19, Phe48, and Phe66. Apparently these hydrophobic residues play only a minor role in defining the electronic properties of the cluster. These data support a model, first defined from results obtained on Tyr19 mutant HiPIP's [Agarwal, A., Li, D., & Cowan, J.A. (1995) Proc. Natl. Acad. Sci. U.S.A. 92, 9440-9444], in which the aromatic core restricts solvent accessibility and thereby stabilizes the oxidized [Fe4S4]3+ cluster.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.