Abstract

Due to its rich mineralogy, fly ash (FA), an industrial waste, has been used to combat erosive, corrosive environments. Powder flowability dictates coating properties. In this investigation, raw FA powder was obtained from a thermal power plant and sieved in various sizes to assess their flowability. Powder's physical characteristics, such as specific surface area, Blaine's fineness number, and bulk density, were determined, and their influence on powder flowability was analyzed. Of these properties, bulk density affects more. Rietveld refinement was performed on the powder to quantify the phases. The powders had 45.08 ± 11.38 amorphous and 11.00 ± 2.76 % of mullite phases. Later, alumina was added between 10 and 50 wt% to FA, and samples were subjected to high-temperature X-ray diffraction at 1150 °C. A ∼32.27% rise in Mullite content was observed for 50 wt% alumina, with ∼119% decrease in the amorphous phase. Finally, one set of FA without additives coating was plasma sprayed onto a marine-grade steel substrate. The coating showed ∼17.31 ± 0.6% of mullite and ∼69.43 ± 0.6 % of the amorphous phase, with decent Mechanical properties. Therefore, 50 wt% alumina in FA powder has improved the mullite phase, bulk density (43%), and flowability by decreasing the amorphous phase content.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call