Abstract

A kind of oriented linear copper fiber sintered felt as a catalyst support for methanol steam reforming is briefly introduced in this work. The sintered felt porosity, sintered felt length and manifold shape as three fundamental influencing factors are experimental investigated their effects on the performances of methanol steam reforming. Experimental results indicate that the sintered felt with moderate porosity and long sintered felt length can effectively enhance the reaction performances of methanol steam reforming. The sintered felt with symmetric triangle manifold can achieve better reaction performances than the one with oblique triangle manifold. However, it is also found that the structural parameters of sintered felt and manifold shape show little influence on the methanol steam reforming at low GHSVs and reaction temperatures. Among these influencing factors, the sintered felt length showed much more influences on the performances of methanol steam reforming than the sintered felt porosity and manifold shape at high reaction temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call