Abstract

The influence of various factors on the interaction of phosphorylated and dephosphorylated myosin with action was examined. It was found that the difference between the values of specific activity of the two myosin forms of actin-stimulated Mg 2+-ATPase is affected by changes in KCl, MgATP and acting concentration. The effect of increased pH on the differences in the rate of ATP hydrolysis by actomyosin containing phosphorylated myosin as compared with that of the dephosphorylated one, observed in the presence of EGTA, is abolished by addition of Ca 2+. Tropomyosin strongly inhibits the actin-stimulated Mg 2+-ATPase of phosphorylated myosin (by about 60%). The tropomyosin-troponin complex and native tropomyosin lowered the rate of ATP hydrolysis by actomyosin containing both phosphorylated and dephosphorylated myosin by about of 60% of the value obtained in the absence of those proteins. These results indicate that the change of negative charge on the myosin head due to phosphorylation and dephosphorylation of myosin light chains modulates the actin-myosin interaction at different steps of the ATP hydrolysis cycle. Phosphorylation of myosin seems to be a factor decreasing the rate of ATP hydrolysis by actomyosin under physiological conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.