Abstract

Although populations of many bat species appear to be recovering in some European countries, the extrinsic and intrinsic factors driving these increases have not yet been assessed. Disentangling the benefits of conservation management from other factors such as climate change is a crucial step for improving evidence-based conservation strategies. We used the greater horseshoe bat (Rhinolophus ferrumequinum) as a case study for understanding the recovery of bat populations, as its north-western populations have increased substantially over the past two decades following severe population declines. Using summer roost count data from the UK National Bat Monitoring Programme spanning an 18 year period from 1997 to 2014, we investigated the effects of (i) landscape characteristics associated with the implementation of the agri-environment schemes on colony trends and size, and (ii) meteorological variables on annual colony growth rate. We also assessed the relationship between colony size and colony growth to investigate intrinsic factors such as an Allee effect. Our results indicated that colony size was positively related to a range of landscape features (e.g. amount of broadleaf woodland and grassland, and density of linear features) surrounding the roost, while the amount of artificial light at night had a significant negative effect. Spring temperatures and precipitation (the latter with a lag of one year) were associated with annual colony growth. We also identified a negative density-dependence effect within colonies. Though the conservation of essential landscape elements may have contributed to population increases in the long-term, we conclude that recent population recovery has also been driven by climate change. Finally we recommend that the conservation of photophobic bat species such as R. ferrumequinum should focus on both the improvement of foraging/commuting habitats and the creation of dark areas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.