Abstract

Data from an in situ monitoring network and five ozone sondes are analysed during August of 2012, and a high tropospheric ozone episode is observed around the 8th of AUG. The Community Multi-scale Air Quality (CMAQ) model and its process analysis tool were used to study factors and mechanisms for high ozone mixing ratio at different levels of ozone vertical profiles. A sensitive scenario without chemical initial and boundary conditions (ICBCs) from MOZART4-GEOS5 was applied to study the impact of stratosphere-troposphere exchange (STE) on vertical ozone. The simulation results indicated that the first high ozone peak near the tropopause was dominated by STE. Results from process analysis showed that: in the urban area, the second peak at approximately 2km above ground height was mainly caused by local photochemical production. The third peak (near surface) was mainly caused by the upwind transportation from the suburban/rural areas; in the suburban/rural areas, local photochemical production of ozone dominated the high ozone mixing ratio from the surface to approximately 3km height. Furthermore, the capability of indicators to distinguish O3-precursor sensitivity along the vertical O3 profiles was investigated. Two sensitive scenarios, which had cut 30% anthropogenic NOX or VOC emissions, showed that O3-precursor indicators, specifically the ratios of O3/NOy, H2O2/HNO3 or H2O2/NOZ, could partly distinguish the O3-precursor sensitivity between VOCs-sensitive and NOx-sensitive along the vertical profiles. In urban area, the O3-precursor relationship transferred from VOCs-sensitive within the boundary layer to NOx-sensitive at approximately 1-3km above ground height, further confirming the dominant roles of transportation and photochemical production in high O3 peaks at the near-ground layer and 2km above ground height, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.