Abstract

The geochemical partitioning of trace metals in sediments is of great importance in risk assessment and remedial investigation. Selected factors that may control the partitioning behavior of Cu, Pb and Zn in non-sulfidic, estuarine sediments were examined with the use of combined sorption curve—sequential extraction analysis. This approach, which has not been previously used to examine estuarine sediments, allowed determination of sorption parameters for Cu, Pb and Zn partitioning to individual geochemical fractions. Partitioning behavior in sulfidic sediments was also determined by sequentially extracting Cu, Pb, and Zn from synthetic sulfide minerals and from natural sediment and pure quartz sand after spiking with acid-volatile sulfide (AVS). Trace metal sorption to the “carbonate” fraction (pH 5, NaOAc extraction) increased with metal loading due to saturation of sorption sites associated with the “Fe-oxide” (NH2OH·HCl extraction) and “organic” (H2O2 extraction) fractions in non-sulfidic sediments. Freundlich parameters describing sorption to the “Fe-oxide” and “organic” fractions were controlled by the sediment Fe-oxide and organic carbon content, respectively. Sequential extraction of Cu from pure CuS, AVS-spiked sediment and AVS-spiked quartz sand showed that AVS-bound Cu was quantitatively recovered in association with the “organic” fraction. However, some AVS-bound Pb and Zn were recovered by the NH2OH·HCl step (which has been previously interpreted as “Fe-oxide” bound metals) in the sequential extraction procedure used in this study. This indicates that the sequential extraction of Pb and Zn in sulfidic sediments may lead to AVS-bound metals being mistaken as Fe-oxide bound species. Caution should therefore be exercised when interpreting sequential extraction results for Pb and Zn in anoxic sediments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.