Abstract

The ability of dairy cattle to adapt to changes in nutrient intake requires appropriately responsive expression of several key genes in liver. Holstein cows were used in 2 experiments to determine the effect of short-term feed restriction on expression of mRNA for gluconeogenic and ureagenic enzymes in liver. In experiment 1, cows were fed a total mixed diet for ad libitum intake for a 5-d period followed by 5 d of 50% of their previous 5-d ad libitum intake followed by 10 d of ad libitum feeding. Liver biopsies and blood samples were obtained on d 5, 10, and 20 of the experiment, the last day of each feeding period. Pyruvate carboxylase (PC) mRNA increased with feed restriction, but phosphoenolpyruvate carboxykinase (PEPCK) was unchanged. Expression of carbamoyl phosphate synthetase (CPS-I), argininosuccinate synthetase, and ornithine transcarbamylase mRNA were not altered by feed restriction; however, CPS-I mRNA expression tended to increase during realimentation. In experiment 2, cows were fed for ad libitum intake for 5 d and then fed 50% of previous intake for 5 d. Liver biopsy samples collected on d 5 and 10 were used for PC mRNA, PEPCK mRNA, and in vitro measure of gluconeogenesis from radiolabelled propionate and lactate. The data indicate expression of genes for key metabolic processes in liver of lactating cows is responsive to feeding level. Expression of PC mRNA is part of the adaptive response to feed intake restriction and is matched by increased capacity for gluconeogenesis from lactate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.