Abstract
Histological and ultrastructural, molecular and elemental distribution changes were investigated during the induction of direct somatic embryogenesis using theCamellia japonica leaf culture system. In this culture system, direct somatic embryogenesis is induced in a controlled way in a specific leaf region (leaf blade) within a leaf. Embryogenic and non-embryogenic leaf regions have characteristic energy-dispersive X-ray spectra already before induction. According to these results electron probe X-ray microanalysis (EPMA) can be a tool for early diagnosis of embryogenic competence. Histological studies showed that severe fluctuations in the number of calcium oxalate crystals and in starch accumulation occur after induction but only in induced tissues. Changes in the cell wall composition of competent cells occur shortly after the induction treatment. The induction of morphogenesis is linked to the appearance of callose covering the surface cells of induced leaves and calluses. A 2nd deposition of material (cutin) is necessary for normal somatic embryogenesis to occur. The involvement of lipid transfer proteins in the appearance of cutin in the embryogenic regions of the explant is suggested.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.